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Abstract 

General theorems on pin structures on products of manifolds and on homogeneous (pseudo-) 
Riemannian spaces are given and used to find explicitly all such structures on odd-dimensional real 
projective quadrics, which are known to be non-orientable (Cahen et al. 1993). It is shown that the 
product of two manifolds has a pin structure if and only if both are pin and at least one of them 
is orientable. This general result is illustrated by the example of the product of two real projective 
planes. It is shown how the Dirac operator should be modified to make it equivariant with respect 
to the twisted adjoint action of the Pin group. A simple formula is derived for the spectrum of the 
Dirac operator on the product of two pin manifolds, one of which is orientable, in terms of the 
eigenvalues of the Dirac operators on the factor spaces. 
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1. Introduction 

This paper is a continuation of our work on spin structures on symmetric spaces [2] and on 
the modified Dirac operator on pin manifolds [9]. It is based, in part, on the lectures given, in 
September 1994, by two of the authors at the Erwin S&r&linger Institute in Vienna [5, lo]. 

A brief review of the spinorrepresentations of Clifford algebras and Pin groups is followed 
by a description of how to construct the representation of the Clifford algebra Cl@ 1 @h2) = 
Cl(hl) @@Cl&) from the representations of Cl(hi), i = 1,2. We extend the results of [3] 
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to pin structures on non-orientable homogeneous (pseudo-)Riemannian spaces and illustrate 
them by constructing such structures on the quadrics Qk, 1 for k + 1 odd. A theorem is given 
on the relation between the existence of a pin structure on a manifold and on its universal 
covering space. 

We consider products of (s)pin manifolds and describe the relations between the pin 
structures and the spectrum of the Dirac operator on the product and on the factors. 

We use the notation traditional in differential geometry. All manifolds and maps under 
consideration are smooth. If V is a finite-dimensional vector space, then V* denotes its 
dual and the value f(u) of the l-form f E V* on u E V is often denoted by (u, f). If h : 
V + W is a homomorphism of vector spaces, then its transpose ‘h : W* + V* is defined 
by (u, ‘h(f)) = (h(u), f) for every u E V and f E W*. Let V be a real m-dimensional 
vector space with an isomotphism h : V --f V* which is symmetric, h = ‘h, and such 
that the quadratic form V -+ Iw, given by u H (u, h(u)), is of signature (k, I), k + 1 = m. 
One says that the pair (V, h) is a quadratic space of dimension m and signature (k, 1). The 
orthogonal group O(h) consists of all automorphisms of (V, h). A Riemunniun space is 
defined as a connected manifold M with a metric tensor, i.e. a symmetric isomorphism 
g : TM + T*M of vector bundles over M; for every x E M the pair (TX M, gx) is a 
quadratic space; the quadratic space (V, h) is a local model of the Riemannian space (M, g) 
if the spaces (V, h) and (T,M, gx) are isometric; an isometry p : V -+ TX M is then 
said to be an orthonomzal frame at X. We say that M is a proper Riemannian space if the 
quadratic form associated with h is definite; since we deal often with the case when the 
quadratic form is indefinite, this terminology is more convenient than the traditional one 
of pseudo-Riemannian spaces. For every Riemannian space M with a local model (V, h) 
there is the principal O(h)-bundle P + M of all orthonormal frames on M. The group 
O(h) acts on P on the right by composition of isometries; the symbol of composition of 
maps is often omitted; e.g. if p E P and a E O(h), then we write pa instead of p o a; a 
similar notation is used for the action of structure groups on other principal bundles. If P 
is a principal G-bundle over M and f : G + H is a homomorphism of groups, then the 
principal H-bundle over M, associated with P by f, is denoted by P xf H. 

2. Clifford algebras and their representations 

In this section, we give a brief description of the properties of real Clifford algebras and 
their complex representations, relevant to our work. Details and proofs can be found in the 
literature; see, e.g. [ 1,6,7 ] and the references given there. 

2. I. Definitions 

The Clzrord algebra Cl(h) of a quadratic space (V, h) is an associative real algebra with 
a unit element 1, containing R @ V as a vector subspace. The algebra is &-graded by the 
main automorphism a, 
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Cl(h) = C?(h) e3 Cl’(h), a =ao+at, 

285 

where a, E Cl”(h) and a(~,) = (-l)&us for E = 0 or 1. If a E Cl”(h), then we write 
F = degu. 

The Clifford algebra is characterized by its universal property: if f : V + A is a 
Clifford map, i.e. a linear map into an algebra A with unit element 1~ and such that 
f(v)2 = (u,h(u))lA for every u E V, then there is a homomorphism of algebras with 
units f” : Cl(h) + A such that f”lV = f. In particular, the inclusion map V -+ Cl(h) is 
Clifford. 

Lemma 1. Let (V, h) and (VO, ho) be quadratic spaces of dimensions m and one, re- 
spectively. Assume that ho is a negative form; then there exists e,+l E VO such that 
(em+], ho(e,+l)) = -1. The Cli$ord map 

V -+ Cl”(h $ ho), v k+ ue,+l, 

extends to an isomorphism of algebras, 

1 : Cl(h) + Cl”(h @ho). 

2.2. Pin and spin groups 

An element u E V is said to be a unit vector if either u2 = 1 or u2 = - 1. The group Pin(h) 
is defined as the subset of Cl(h) consisting of products of all finite sequences of unit vectors; 
the group multiplication is induced by the Clifford product and Spin(h) = Pin(h) nCl’(h). 
For every a E Pin(h) the map p(u) : V -+ V, given by 

p(u)tJ = cr(u>vu-’ (1) 

is orthogonal, 

‘p(u) o h o p(u) = h, (2) 

and defines the twisted udjoint representation p of Pin(h) in V. The two exact sequences 

1 -+ Z2 + Pin(h) 3 O(h) -+ 1 and 1 --f 772 + Pin(-h) -% O(h) -+ I 

give two inequivalent (central) extensions of the orthogonal group O(h) by E2. If the 
dimension m of V is even, then one can use the udjoint representation Ad such that Ad(u)u = 
uvu -’ to form two inequivalent extensions of O(h) by Z2, namely 

1 -+ Z2 -+ Pin(h) 2 O(h) + 1 and 1 --f Z2 + Pin(-h) 2 O(h) -+ 1. 

If V = Rk+t and one wants to specify the signature (k, 1) of h, then one writes Cl@, l), 
O(k, I), Pin@, 1) and Spin(k, 1) instead of Cl(h), O(h), Pin(h) and Spin(h), respectively. 
Since the groups Spin(h) and Spin(-h) are isomorphic, one writes Spin(m) instead of 
Spin(m, 0) = Spin(0, m). 
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Assume V to be oriented and let (el, . . . , e,) be an orthonormal frame in V, of tbe 
preferred orientation. Tbe square of the volume element, vol(h) = et . . . e,, is either 1 or 
- 1, depending on the signature of h. Putting i = &i, it is convenient to define i(h) E 
(1, i) so that_ v01(h)~ = i(h)2. Clearly, u vol(h) = (-l)“‘+’ vol(h)u for every u E V and 
p(vol(h)) = - idv. 

2.3. Spinor representations 

The following lemma summarizes facts about representations of Clifford algebras [ 1,7] 
relevant to our work and introduces a notation and terminology used in theoretical 
physics [9]. 

Lemma 2. 
(i) rfthe dimension m of V is even, m = 2v, then the algebra Cl(h) is central simple; as 

such it has only one, up to equivalence, irreducible and faithful representation 

y : Cl(h) + End S 

in a complex, 2’-dimensional space of ‘Dirac’ spinors. On restriction to the even sub- 
algebra Cl’(h) this representation decomposes into the sum y+ @ y- of two irreducible, 
2’-’ -dimensional ‘Weyl’ representations. 

(ii) If the dimension m of V is odd, m = 2v - 1, then the algebra Cl’(h) is central 
simple; its (unique up to equivalence) irreducible and faithful representation extends 
to two ‘Pauli’ representations y+ and y_ of thefull algebra Cl(h) in a complex 2”-‘- 
dimensional space of Pauli spinors. These representations are related by y+ = y- ecu; 
they are complex-inequivalent and irreducible, but not necessarilyfaithful. Their direct 
sum, y = y+ @ y_, is a faithful representation of Cl(h) in the 2”-dimensional space 
S of ‘Cartan’ spinors. The latter representation can be identtfied with the restriction 
to Cl(h) of the Dirac representation 

y’ : Cl(h $ ho) + End S. (3) 

The commutant of the Cartan representation is generated by y(vol(h)). 

We use indiscriminately the name of spinor representation for any one of tbe represen- 
tations of the type described above, also when they are restricted to Pin(h) or Spin(h). 

If the representation y is as in Lemma 2, then there exists a Dirac intertwiner defined to 
be an isomorphism r : S -+ S, intertwining the representations y and y o cr, 

y o a(a) = Py(a)P-’ for every a E Cl(h), 

and such that r2 = ids. Referring to Lemma 1 we see that such an intertwiner can be used to 
extend the representation y : Cl(h) + End S to a representation y’ : Cl(h @ho) + End S 
by putting 
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y’(u) = i y(u)r for t, E V and y’(em+r) = - i r (4) 

so that y = y’ 0 1. 

Lemma 3. 
(i) Zfthe dimension of V is even and y : Cl(h) + End S is a Dirac representation, then 

the Dirac intertwiner f equals either i(h)y(vol(h)) or -i(h)y(vol(h)). 
(ii) Zfrhe dimension of V is odd and y : Cl(h) + End S is a Cartan representation, then 

the Dirac intertwiner r can be any element of the set 

{iy’(e,+t)(coshz + i(h)y(vol(h))sinhz): z E Cl, 

where y’ is the extension defined in (4). If r and f’ are two such intertwiners, then 
there is 52 E GL(S), belonging to the commutant of the representation y and such 
that 

r’ = 52r52-‘. (5) 

The following two propositions describe the construction of spinor representations of the 
algebra Cl(ht @ h2) from suitably ‘twisted’ tensor products of the representations of the 
algebras Cl(hi), i = 1,2, and also the corresponding Dirac intertwiners. 

Proposition 1. Consider two quadratic spaces (Vi, hi), i = 1,2, and the spinor represen- 
tations yt : Cl(hi) + End Si. Assume that y1 has a Dirac intertwiner T’). Then 
(i) The map VI x V2 + End St 18 End S2 given by 

(u1,~2) ++ YI(VI) @idsz + r~ @ vz(v2) (6) 

is a Cli$ord map and thus extends to a representation y ofCl(h 1 @I h2) in S1 @ ST. If 

rz is a Dirac intertwinerfor y2, then 

r = l-1 8 r2 (7) 

is a Dirac intertwiner for y. 
(ii) Let the dimension of VI be even and let y1 be the Dirac representation. If M is a 

Dirac (resp., Cartan, Pauli) representation, then y is a Dirac (resp., Car-tan, Pauli) 
representation. 

(iii) Let the dimension of VI be odd and let y1 be the Cartan representation. If y;! is a 
Dirac (resp.. Puuli) representation, then y is a Cartan (resp., Dirac) representation. 
If M is the Pauli representation, then the Dirac intertwiner for y is given by r = 
ii(hl)yl(vol(hl))fl @ ids,. Zf M is the Cartun representation, then y decomposes 
into the direct sum of two (equivalent) Dirac representations. 

Proof. Since the proofs of the different cases are similar, we give it only for the last, least 
obvious case. The Cartan representations yr and M being faithful, so is tire representation 
y. Let mi be the dimension of Vi, i = 1,2. The dimension of the carrier space Sr @ S2 is 
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now 21+(mi+m2)/2, i.e. it is twice the dimension of the space of Dirac spinors associated 
with Cl@ t @ h t >. One checks readily that ids, @ M (vol(h2)) generates the cornmutant of 
the representation y and that the endomorphisms i (idslNs2 + i (hz)ids, 8 m(vol(h2))) and 
i (ids, es, -i (Wids, @y2(vol(h2))) are projections on two complementary and irreducible, 
with respect to y, subspaces of St G0 S2. 0 

In order to cover the case when both yt and y2 are Pauli representations, it is convenient 
to use the physicists’ Pauli matrices, 

Proposition 2. Let the quadratic spaces (Vi, hi), i = 1,2, be both of odd dimension. 
Consider the Pauli representations, 

yi : Cl(hi) + End Si, i = 1,2. 

The Clifford map 

VI x V2 + End C* @ End St 8 End S2, 

given by 

(~1, ~2) H 61 GO yl(ul) 8 ids, + a2 ~3 ids, @ y2(u2), (8) 

extends to the Dirac representation y of Cl(h 1 @ h2) in @* @ S1 @ S2. Its Dirac intertwiners 
are r = fcr3 60 ids, 60 ids,. 

2.4. The Clifford evaluation map 

The tensor product of a spinor representation y in S and of the representation contragra- 
dient to p defines a representation o of Pin(h) in the vector space Hom(V, S): if a E Pin(h) 
and @ E Hom(V, S), then 

a(a)@ = y(a) 0 @ 0 p(a-‘). (9) 

Identifying Hom( V, S) with V* 63 S, we define the Cl$ord evaluation map 

F : Hom(V, S) + S by p(u* 63 q) = y(h-l(u*))cp, (10) 

where u* E V* and q~ E S. Using (1) and (2) one shows that 

(11) 

for every a E Pin(h). 
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3. Pin and spin structures 

3. I. De@zitions 

Let (V, h) be the local model of a Riemannian manifold M and let x : P -+ M be the 
bundle of all orthonormal frames on M. A Pin(h)-structure on M is a principal Pin(h)- 
bundle m : Q + M, together with a morphism x : Q + P of principal bundles over M 
associated with the epimorphism p : Pin(h) -+ O(h). The morphism condition means that 
m = n o x and there is the commutative diagram 

Q x Pin(h) xx/! P x O(h) 

4 4 

Q 3. P 

where the vertical arrows denote the action maps. 
The expression Pin(k, I)-structure is used when one wants the signature of h to appear 

explicitly. For brevity, we shall describe a Pin(h)-structure by the sequence 

Pin(h) -+ Q 5 P 5 M. (12) 

If M is orientable and admits a Pin(h)-structure, then it has a spin structure. In an abbreviated 
style, similar to that of (12), it may be described by the sequence of maps 

Spin(h) + SQ + SP + M, (13) 

where S P is now an SO(h)-bundle; if the quadratic form associated with h is definite, then 
S P is one of the two connected components of P. 

3.2. Existence of pin structures 

Let TM = T+M @ T-M be the decomposition of the tangent bundle of M into the 
Whitney sum of two vector bundles such that the metric tensor restricted to T+M (resp., 
T-M) is positive- (resp., negative-) definite. Denoting by w+ (resp., by wi) the ith Stiefel- 
Whitney class of T+ M (resp., of T-M), one can formulate the following theorem. 

Theorem (Karoubi). A Riemannian space admits a Pin(h)-structure (12) if and only if 

w; f w; + WJWT + w;, = 0. (14) 

A proof of the theorem is in [6]. Introducing the Stiefel-Whitney classes wi of TM, one 
can write (14) as 

w2 + (wF)2 = 0. (1% 

In particular, if M is proper Riemannian, then the condition for M to have a Pin(m,O)- 
structure is w2 = 0, whereas the corresponding condition for a Pin(O,m)-structure is 
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14 + wf = 0. The conditions tuf = 0 and u~t = 0 are equivalent to the orientability 
of T*M and TM, respectively. 

3.3. Homogeneous pin manifolds 

The following theorem is an extension of Theorem 1 in [3] to the case of a homogeneous 
manifold that need not be orientable. 

Theorem 1. Let (V, h) be the local model of a Riemannian space M with a Lie group G 
acting on M transitively by isometries and let H be the isotropy group of a point of M. 

(0 

(ii) 

(iii) 

If the linear isotropy representation t : H + O(h) lifts to the homomorphism Q : 
H + Pin(h), then there is a Pin(h)-structure Q + P += M such that Q = G xg 
Pin(h). 
If f and ? are two lifts oft and the pin structures defined by these lifts are isomorphic, 
then Z = ?. 
Ifthe group G is simply connected and M has a Pin(h)-structure, then t lifs to Pin(h) 
and the Pin(h)-structure is as in (i). 

Proof The proof is obtained as in the orientable case. For part (iii), one considers the lift 
of the action of G on M to an action of G on the total space Q of the pin structure and 
observes that the lifted action commutes with that of the group Pin(h). 0 

3.4. Products of pin manifolds 

Theorem 2. Let M’ and Ml’ be two Riemannian spaces. Their product has a pin structure if 
and only if M’ and M’t are pin manifolds and at least one of the factor spaces is orientable. 

Proof Assume first that the product M = M’ x M” has a pin structure. Denote by pi, WI 
and WY the ith Stiefel-Whitney classes of the tangent bundles of the manifolds M, M’ and 
MN, respectively; similarly, let w;, w;- and WY- be the first classes of T-M, T-M’ and 
T-M”. We have (15) because M is pin and 

w2=w;+w;+w;w;’ 

fromthe Whitneyproductproperty. Since WI- = w;-+w;I- and2w;-w;l- = 0, condition 
(15) reduces to 

w; + (w;-)2 + w;’ + (WY-)2 + w;w;’ = 0. (16) 

Each of the three underlined terms in the last equation refers to a different space and thus it 
must vanish separately. The vanishing of the first two means that M’ and MN are both pin 
manifolds and w; WY = 0 implies that at least one of them is orientable and, as such, has 
a spin structure. Conversely, Eq. (16) implies (15): the product of a pin manifold and of a 
spin manifold is a pin manifold. 0 
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Consider two quadratic spaces (VI, h I), ( VZ, h2) and their orthogonal sum (VI $ V2, h t@ 
h2). The injection VI + VI @ V2 extends to the monomorphism of groups, Pin(hr) + 
Pin(ht $h2); similarlyforPin(h2).Letat,bt E Pin(hr) anda2, b2 E Pin&); the ‘twisted’ 
multiplication law, 

(uI,u~). (bl,bz) = (u~b~,(-l)dega2degb%z~b~), (17) 

makes Pin(hr) x Pin&) into a group such that the map 

Pin(ht) x Pin&) + Pin(ht $ h2), 

is a homomorphism of groups with kernel Z2 generated by (- 1, - 1) [6]. 
It is convenient to have an explicit construction of the pin structure on the product, in 

terms of the pin and spin structures on the factors. Let again Ml and M2 be pin manifolds, 
with local models (VI, h 1) and (V2, h2), respectively, and assume that one of them, say M2, 
is orientable. Let 

Pin(hr) -+ Ql 2 Pt 2 Ml 

and 

Spin(h2) + SQ2 2 SP2 3 M2 

be the pin and spin structures of the two spaces. The bundle 

O(hl) x SO(h2) -+ PI x SP2 nq2 Ml x M2 

is a restriction of the bundle of all orthonormal frames on the product space. Let Q be 
the quotient of the set Qt x SQ2 by the equivalence relation: (ql, 42) s (q;, q;) if and 
only if either q1 = q; and q2 = q; or q1 = q;(-1) and q2 = q$(-1). The group 
(Pin(ht) x Spin(hz))/Zz acts freely on Q, 

[(q1rq2)1 * [(a1,a2)1 = [(qlal,q2a2)1, (18) 

where q1 E Ql., q2 E SQ2, al E Pin(hr) and a2 E Spin(h2). The projection x : Q -+ 

PI x SP2, x([(ql.q2)1) = (xl(ql),x2(q2)) has the equivariance property required of a 
‘restricted’ pin structure. The total space of the Pin(ht @ hz)-structure on the product is 
Q xf Pin(hl @ h2), where f is the homomorphism 

f : (Pin(ht) x Spin(h2))/& + Pin(hr @I h2), f([@1,a2)1> = a1a2. 

Note that if Ml and M2 are both non-orientable pin manifolds, then Q can be still defined as 
above, but (18) does not yield an action of the group (Pin(hr) x Pin(hz))/& on Q because 
of the twisting in (17). 

Example. To illustrate Theorems 1 and 2 on a simple example, consider the product M of the 
real projective plane IFp2 = §#!2 by itself. The non-orientable space P2, given the proper 
Riemannian metric descending from §2, is symmetric and has a Pin(O,2)-structure [4]. The 
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group G = Spin(3) x Spin(3) acts transitively on M and the stabilizer H of an element of 
M has four connected components. Considering lifts of the linear isotropy representation 
t : H + O(2) x O(2) to any one of the groups Pin(4,0), Pin(2,2) and Pin(O,4) one 
shows that none exist and, therefore, M has no pin structure. 

3.5. The relation between pin structures on manifolds and on their universal covers 

Let n be the first homotopy group of a connected manifold M. The universal covering 
manifold I%? of M is the total space of the principal n-bundle 6 : I@ + M; see, e.g., 
Section 14 in [8]. We write the left action of n on ti as (c, X) H cx, so that ((cx) = t(x) 
for every c E l7 and x E a. If M is a Riemannian space with a local model (V, h), then 
so is I@. The principal O(h)-bundle ii : P -+ h of all orthonormal frames on k can be 
identified with the bundle induced from it : P + M by 6, 

P = ((x, p) E lQ x P: 6(x) = n(p)). 

The projection ~7 : P + I%? is given by 5(x, p) = x and there is the map tl : P + P 
such that ~(x, p) = p. The group O(h) acts on P so that ((x, p), A) H (x, PA), where 
A E O(h); the map q is equivariant: n(x, PA) = n(x, p)A. There is a natural lift of the 
action of n to d given by (c, (x, p)) H (cx, p). The lifted action commutes with that of 
O(h). We can now formulate the following theorem. 

Theorem 3. A Riemannian space M, with a local model (V, h), admits a pin structure (12) 
if and only tf there exists a pin structure 

- _ 
Pin(h) + Q 1! B 5 A? (19) 

on its universal cover & and an action of I7 = nl (M) on 0, lifting the action of I7 on P 
and commuting with the action of Pin(h). 

Proof ‘Assume first that M has the pin structure (12). The &bundle Q + P is induced 
from the bundle Q + P by the map I] : p + P, 

0 = ((x-q) E I@ x Q: t(x) = m(q)], X(x,q) = 6, x(q)). 

The action of n on Q given by c(x, q) = (cx, q) commutes with the action of Pin(h), given 
by (x, q)a = (x, qa), where (x, q) E 0 and a E Pin(h). Conversely, assume that there is a 
pin structure (19) on the universal covering space of M and an action of l7 on Q such that, 
for every c E n, a E Pin(h) and 4 E Q one has (cq)a = c(qa) and R(cq) = CR(~). We 
define Q = Q/l7; i.e. if [q]. [@‘I E Q, then [@I = [q’] if and only if there is c E n such 
that 4’ = ~4. The projection x : Q + P is now given by x ([q]) = ~(2 (4)). An action of 
Pin(h) on Q is defined by [q]a = [qa] and seen to satisfy x([q]a) = x([q])p(a). 0 
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4. Pin structures on non-orientable, real projective quad&s 

Recall that the real projective quadric Qk, I = (§k x §l)/& is acted upon transitively by 
the group G = Spin(k + 1) x Spin(Z + 1). Proper quadrics, i.e. those for which kl > 0, are 
orientable if and only if k + 1 is even; their spin structures have been determined in [ 31. Some 
of those quadrics have no spin structure (example: Q3.5). As an application of Theorem 1 
we now show that all non-orientable quadrics have pin structures. They are described in the 
following theorem. 

Theorem 4. Let k and 1 be positive integers, even and odd, respectively. Every quadric 
Qk, 1 has two pairs of inequivalent pin structures: 

fork + 1 = 1 mod 4 in signature (0, k + I) and (1, k), 

fork + 1 = 3 mod 4 in signature (k + 1,0) and (k, I). 

Proo& Following Section 6 of [3], we introduce two orthonormal frames (el , . . . , ek+l) and 
(ft, . . ..fi+t)in!Rk+‘andR’+’ , respectively. Considered as elements of Clifford algebras, 
the vectors satisfy 

eaep + epe, = *2&p and fwfv + fvfp = f2& 

where the choice of signs depends on the signature under consideration and 01, #I = 1, . . . , 
k+l; l,u=l,..., 1+1. 

The stabilizer of [(ek+t, fi+l)] is the group H = HoU HI, where Ho = Spin(k) x Spin(l) 
and HI is generated in G by Ho and the element (etek+l, fl fi+l). The linear isotropy 
representation t : H + O(k) x SO(l) is given by t(a, b) = (p(a), p(b)) for (a, 6) E 

Ho and r(elek+19fifi+l) = (--p(elh - dfi)), where p denotes the twisted adjoint 
representation. It is now appropriate to consider lifts to the groups Pin(k, 0, Pin(Z, k), 
Pin(k + E,O), and Pin(0, k + 1). For (a, b) E HO one has f(a,b) = ab. The element 
(-p(et), - p(fl)) is covered by two elements of the Pin group, namely by fet fl vol, 
wherevol=et...ekft...fl.Since 

(elek+l, fifi+l)2 = (-1, - 1) A 1, 

one has to have (et fl ~01)~ = 1. Since vol is now in the center of the Pin group, the last 
condition reduces toe: ff vo12 = - 1. The squares occurring above depend on the signature; 
their evaluation leads to the conclusion of the theorem. An independent check of this result 
is provided by the computation of the Stiefel-Whitney classes. According to Section 3 of 
[3], the tangent bundle of Qk, I decomposes into the direct sum of two vector bundles T’ and 
T” of fiber dimension k and 1, respectively. The odd-dimensional subbundle is orientable, 
WY = 0, whereas the even-dimensional one is not, WI = w{ # 0. The second class of 

TQk91 is 

w2 = w; + w;’ = ;(k(k + 1) + I(I + 1))~: = 
w: fork+l = 1 mod4, 
0 fork+f r3mod4. 
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Since now w{ WY = 0, according to the Karoubi theorem, the quadric has a pin structure if 
wz+w;wl =O.Fork+I= lmod4,thisgivesw; =wl,i.e.themetricrestrictedtoT’ 
should be negative-definite. For k + 1 = 3 mod 4, condition (14) implies w; = 0 and the 
metric restricted to T’ should be positive-definite. 0 

5. Spinor fields and Dirac operators on pin manifolds 

5.1. Bundles of spinors and their sections 

Let M be a Riemannian space with a Pin(h)-structure (12) and let y be a spinor repre- 
sentation of the group Pin(h) in S. The complex vector bundle ?rE : E -+ M, with typical 
fiber S, associated with Q by y, is the bundle of spinors of type y . If the dimension m of M 
is even (resp., odd), then E is called a bundle of Dirac (resp., Cartan) spinors. Form odd, 
one can also define the bundle of Pauli spinors over M. Similarly, if m is even and M has 
a spin structure, then there are two bundles of Weyl spinors over hf. A spinorjeld of type 
y on M is a section of nE. The (vector) space of such sections is known to be in a natural 
and bijective correspondence with the set of all maps 9 : Q + S equivariant with respect 
to the action of Pin(h). Denoting by S(a) : Q + Q the map q H qa, we can write the 
‘transformation law’ of + as 

$0 &a) = v(a-‘)v+ 
for every a E Pin(h). It is convenient to refer to + itself as a spinor field of type y on M. 
Depending on whether E is a bundle of Dirac, Weyl, Cartan or Pauli spinors, one refers to 
its sections as Dirac, Weyl, Cartan or Pauli spinor fields, respectively. 

5.2. Covariant differentiation of spinor$elds 

Let (12) be a pin structure on a Riemannian space M with a local model (V, h). The 
Levi-Civita connection form on P lifts to the spin connection l-form o on Q with values 
in the Lie algebra of the group Spin(h). For every q E Q. there is the orthonormal frame 
x(q) : V + T,(q) M. The basic horizontal V*-valued vector field V is defined on Q by 
the spin connection as follows. For every q E Q the linear map V(q) : V + T4 Q is such 
that 

T@-V(q)) = x(q) and (~9 V(q)) -I@ = 0, 

where _J denotes the inner product (contraction). The field V transforms according to 

V(qa) = T&%) 0 V(q) 0 p(a). 

Let @ : Q + S be a spinor field of type y. Its covariant derivative is a map V@ : Q + 
Hom(V, S) such that, for every u E V and q E Q, one has 

(~9 W*/)(q)) = (~9 V(q)) Ad*-. 
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The covariant derivative transforms according to 

where 0 is the representation of Pin(h) in Hom( V, S) given by (9). 

5.3. The classical and the modified Dirac operators 

Using the notation of the preceding paragraph and (lo), the classical Dirac operator can 
be written as 

DC’,) = p o vll/. 

According to (1 l), the classical Dirac operator maps a spinor field of type y into a spinor 
field of type y o (r. 

Let f be a Dirac intertwiner; the modiJed Dirac operator is defined by 

D = i rDc’. (21) 

It preserves the type of the spinor field and the corresponding eigenvalue equation, D$ = 
k$r, is meaningful on non-orientable pin manifolds for Cartan or Dirac spinor fields. 

Remark 1. If the dimension of M is even, then one can use the adjoint vector representation 
of Pin(h) in the definition of the pin structure on M. The classical Dirac operator preserves 
then the type of spinor fields and there is no need for its modification. 

Remark 2. If the dimension of M is odd and one considers Cartan spinors, then one has a 
freedom in choosing r, as described in Part (ii) of Lemma 3. If D’ = i I”D” and Q is as 
in (5), then D’Q = Szdi: Therefore, the spectra of the operators D and D’ coincide. 

Remark 3. If M is a spin manifold and Jr is a spinor field, then r+ is a spinor field of the 
same type. Since 

(1 +ir)-’ = $(l -ir) and D = (1 +ir)D”(l +ir)-‘, 

if DC'@ = k@, then De’ = A@‘, where@ = (1 + i r)$r. 

Remark 4. Since r anticommutes with DC’, on a spin manifold the spectra of DC’ and D 
are both symmetric: if 1 is an eigenvalue, then so is --A. 

Remark 5. If M is an odd-dimensional spin manifold, then the interesting object is the 
Pauli operator, the restriction of DC1 to Pauli spinor fields. If rp is an eigenfunction of the 
Pauli operator, then the Cartan spinor fields (60, 0) and (0, (p) are eigenfunctions of DC’ with 
opposite eigenvalues. 
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5.4. The spectrum of the Dirac operator on a product of pin manifolds 

Consider, as in Section 3.4, two pin manifolds Ml and M2 and assume that the second 
is orientable. Their product M has a pin structure determined by the double cover Q = 
(Q 1 x SQ2)/& of the restriction Pt x S P2 of the bundle of orthonormal frames of M to the 

groupO(ht) x SO(hz). Considerthecanonical projections Qt x SQ2 3 Q, Qt x SQ2 -% 

Qt and Qt x SQ2 -% SQ2. The spin connection forms wt and w2 on Qi and SQ2, 
respectively, define a form w on Q such that pr* o = prTwi + pr;w2. The l-form o has 
values in the Lie algebra of Spin(hi 89 h2) and defines the spin connection form on Q. 
If @l : Qi + St and $2 : SQ2 + S2 are spinor fields of type yt and y2 on Ml and 
M2, respectively, then their tensor product, $1 8 @2 : Q + St 8 S2, is well-defined by 

(@I @ W([(qt, 41) = hh) ~3 th(qd and is a spinor field on M of type Y given by 
Proposition 1. Denoting by V, Vt and V2 the basic horizontal vector fields on Q, Qt and 
S Q2, respectively, we can write the Leibniz rule for the covariant derivative as V(ll/l@+2) = 
(VI e-1) @I +2 + $18 V2+2. Using an analogous notation for the (modified) Dirac operators, 
and assuming that the representations yl and m are either Dirac or Cartan, we obtain, by 
virtue of (6), (7) and (21), 

D(vh @ @2) = Dlllrl 63 fi@2 + @I CO 02342. (22) 

The Pythagoras Theorem for the Dirac operator. Let M be theproduct of a pin manifold 
Ml and of a spin manifold M2. If h. 1 and A2 are eigenvalues of the Dirac operators on MI 

and M2, respectively, then ,/= )c , + h, and - ,/= h , + h, are eigenvalues of the Dirac operator 
on M. 

ProoJ Assume first that the representations yt and y2 defining the type of spinor fields 
on Ml and M2, respectively, are either Dirac or Cartan. If D1 and 02 are the (modified) 
Dirac operators on Ml and M2, respectively, then formula (22) applies and its consequence, 
D2 = Df @ ids, + ids, 8 022, suffices to prove the theorem. To see in detail how the 
eigenfunctions of D are constructed from those D1 and D2, consider spinor fields +i on 
Mi satisfying Di +i = Ai $i, i = 1,2. The spinor fields on M, 

are then easily seen to satisfy De* = f 7 A1 + )c2 I,+&. 
If both Ml and M2 are odd-dimensional spin manifolds, then one can assume yt and M 

to be Pauli representations and take DI and D7_ to be the corresponding Pauli operators. Let 
q E C2 and let @i be Pauli spinor fields on Mi, i = 1,2. According to Proposition 2, the 
Dirac operator on M acts on the spinor field q @ $1 8 r,kz as follows: 

DC’@ @ $1 @ ~92) = 01(v) ~3 &$I ~3 ti2 + 02(v) @ $1 63 D29b2. 

Let (el, e2) be the canonical frame in C2 so that ot (ei) = e2, o2(el) = i e2, etc. If Di$ri = 
hi$i and 
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